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Population genetic analysis of shotgun assemblies
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We introduce a simple, broadly applicable method for obtaining estimates of nucleotide diversity � from genomic
shotgun sequencing data. The method takes into account the special nature of these data: random sampling of
genomic segments from one or more individuals and a relatively high error rate for individual reads. Applying this
method to data from the Celera human genome sequencing and SNP discovery project, we obtain estimates of
nucleotide diversity in windows spanning the human genome and show that the diversity to divergence ratio is
reduced in regions of low recombination. Furthermore, we show that the elevated diversity in telomeric regions is
mainly due to elevated mutation rates and not due to decreased levels of background selection. However, we find
indications that telomeres as well as centromeres experience greater impact from natural selection than
intrachromosomal regions. Finally, we identify a number of genomic regions with increased or reduced diversity
compared with the local level of human–chimpanzee divergence and the local recombination rate.

[Supplemental material is available online at www.genome.org.]

The nature of population genetic data has changed dramatically
over the past few years. For the past 15–20 yr the standard data
were Sanger sequenced DNA from one or a few genes or genomic
regions, microsatellite markers, AFLPs, or RFLPs. With the avail-
ability of new high-throughput genotyping and sequencing tech-
nologies, large genome-wide data sets are becoming increasingly
available. The focus of this article is the analysis of tiled popula-
tion genetic data, i.e., data obtained as many small reads of DNA
sequences that align relatively sparsely to a reference genome
sequence or in segmental assemblies. These data differ from clas-
sical sequence data in several ways. The main difference is that
for each nucleotide position under scrutiny, a different set of
chromosomes is sampled. While this problem is similar to the
usual missing data problem in directly sequenced data, it is dif-
ferent for diploid organisms, because it is unknown how many
chromosomes from an individual are represented in any segment
of the assembly. This implies that for any particular segment of
the alignment it is not known whether aligned sequence reads
are drawn from one or both chromosomes. The main objective of
this study is to develop and apply statistics for addressing these
problems. We will primarily do this in the framework of com-
posite likelihood estimators (CLEs). CLEs are becoming popular
for dealing with large-scale data in population genetics. They
form the basis for a number of recent methods for analyzing
large-scale population genetic data, including methods for esti-
mating changes in population size (e.g., Nielsen 2000; Wooding
and Rogers 2002; Polanski and Kimmel 2003; Adams and Hudson
2004; Myers et al. 2005) and methods for quantifying recombi-

nation rates and identifying recombination hotspots (Hudson
2001; McVean 2002).

A fundamental parameter of interest in population genetic
analyses is � = 4Neµ, where Ne is the effective population size and
µ is the mutation rate per generation. There are several estimators
of �, including the commonly used estimator by Watterson
(1975) based on the number of segregating sites. One reason for
the interest in this parameter is that it is informative regarding
both demographic processes (for review, see Donnelly and Tavare
1995) and natural selection (Hudson et al. 1987). For example, a
reduction in � in a region with normal or elevated between-
species divergence suggests the action of recent natural selection
acting in the region. Therefore, estimates of � can be used to
identify candidate regions of recent selection. In addition, the
relationship between recombination rates and � is highly infor-
mative regarding the relative importance of genetic drift and
natural selection in shaping diversity in the genome. In Dro-
sophila, it is well established that � varies with the local recom-
bination rate (Begun and Aquadro 1992). This has been inter-
preted as evidence for the action of selection in the genome. Both
positive and negative selection can lead to a reduction in popu-
lation genetic variability, and in both cases the effect is stronger
in regions of low recombination. In flies, some recent evidence
suggests that positive selection is the dominant force (Andolfatto
and Przeworski 2001; Sawyer et al. 2003; Andolfatto 2005), and
the results from several recent studies suggest that positive selec-
tion may also be common in the human genome (Voight et al.
2006; Tang et al. 2007; Williamson et al. 2007). However, there
has been very little evidence for a strong correlation between �

and recombination rate in humans beyond what can be ex-
plained by possible mutagenic effects of recombination (Hell-
mann et al. 2003, 2005). There is no simple way of reconciling
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the lack of a correlation between diversity and recombination
rate with claims of selection in the human genome.

While in the near future most tiled population genetic data
will undoubtedly be generated by platforms such as 454 pyrose-
quencing (Roche) (Margulies et al. 2005), Illumina (formerly So-
lexa) (Bentley 2006), and SOLiD sequencing (ABI), once the se-
quences are assembled and single nucleotide polymorphisms
(SNPs) are identified, the population genetic problems relating to
the analysis of these data are the same as the ones arising when
analyzing assemblies of reads obtained through traditional
Sanger sequencing. We therefore illustrate the potential for
population genetic analysis of this type of data on a classical
assembly of Sanger sequencing reads in humans: the Celera Ge-
nomics human sequencing and SNP discovery data (Venter et al.
2001). Based on these data, we obtain unbiased estimates of � in
windows throughout the genome, and re-examine the relation-
ship between human diversity and recombination. Finally, we
identify regions with increased or reduced ratios of polymor-
phism to divergence, which can be seen as candidate regions for
either balancing selection or selective sweeps, respectively.

Therefore, the aim of this study is twofold: to illustrate how
shotgun assembly data can be used for population genetic analy-
sis and to illustrate this kind of population genetic analysis using
data from the Celera shotgun assembly.

Results and Discussion

Composite likelihood estimation

The composite likelihood estimators (CLEs) are constructed by
taking the product of individual likelihood functions and maxi-
mizing this product, even if these marginal likelihood functions
are not independent. In the context of DNA data, this usually
implies taking the product of the likelihood calculated in indi-
vidual nucleotide sites (e.g., Nielsen 2000) or pairs of nucleotide
sites when linkage disequilibrium is of interest (Hudson 2001).
Assuming data from one population, the likelihood function in a
single site is given by p(X = x|�), the probability of a nucleotide
variant segregating at frequency x/n in the population, x = 1,
2. . .n � 1, in a sample of n chromosomes, under a model param-
eterized by �. The composite likelihood function for � is then
defined as (e.g., Nielsen 2000; Adams and Hudson 2004):

CL��� ≡ �
x=1

n−1

�p�X = x|���Sx, (1)

where Sx is the number of SNPs of type x, i.e., the number of SNPs
with the derived allele segregating at a frequency of x/n in the
sample. Error models can be incorporated into the calculation of
this likelihood function. Estimates of � are then obtained by
maximizing CL(�) with respect to �. This method can be gener-
alized to multiple populations by considering the joint probabil-
ity of the SNP frequencies in the populations. If the SNPs are in
linkage disequilibrium, and therefore not independent, the result
of this procedure is not a maximum likelihood estimate. How-
ever, this type of estimator can nonetheless be shown to have
desirable statistical properties, such as consistency under quite
general conditions (Wiuf 2006). In some cases, the composite
likelihood estimators are identical to classical estimators. For ex-
ample, the maximum composite likelihood estimator of � is iden-
tical to Watterson’s (Watterson 1975) estimator of �, which was
originally derived as a method of moments estimator.

The CLEs can be generalized to tiled population genetic
data, by summing over all possible (unknown) chromosomal
sample sizes in a segment. The marginal sampling distribution
for a single SNP from a particular segment can then be calcu-
lated as

p�X = x|�� = �
j=1

m

p�X = x|�,n�p�n = j�, (2)

where m is the alignment depth (number of reads) for the par-
ticular SNP and n is the number of distinct chromosomes (the
same chromosome may have been sampled twice). p(n = j), the
distribution of the number of distinct chromosomes in a seg-
ment, can usually be calculated fairly easily by taking into con-
sideration the procedure used to sample the sequencing reads. In
the Methods section, it is described how to calculate p(n = j) if the
identity with respect to an individual is known for each se-
quence. However, similar expressions can also be obtained if this
is not known.

The method can also be extended to data from multiple
populations by considering the joint frequency spectrum from
the populations. For example, for two populations, the data for
a single SNP consists of the allelic counts, X1 and X2, in the
two populations. The likelihood function in a single SNP is then
p(X1 = x1,X2 = x2|�), and everything follows as before. However,
in this study we will treat the data as if it has been sampled from
only one population.

The estimator of � we develop is a modification of Watter-
son’s (Watterson 1975) classical estimator applicable to the tiled
shotgun sequencing data. It assumes an infinite sites model and
a constant sequencing error rate. It can be derived as a composite
likelihood estimator, but in the Methods section we provide a
simpler derivation based on the method of moments. We assume
that the alignment can be divided into v segments, where the
v � 1 divisions between segments are chosen to fall at the points
where a sequencing read starts or ends (Fig. 1). The estimator is
then obtained by calculating the expected number of true SNPs
and false SNPs due to errors in a segment. By summing over all
segments in the alignment, the total expected number of SNPs
(including errors) can be calculated, and an estimator can be
constructed (see Methods):

�̂ =

ST − � �
r=1

v

LrmrI�mr > 1�

�
r=1

v

Lr� �
j=nmin,r

nmax,r

p�nr = j��
i=1

j−1 1
i �

(3)

Figure 1. Schematic drawing of shotgun reads for one window. The
colored bars represent the reads; each color corresponds to a different
individual. For our analysis, the window is subdivided into v different
segments, so that the sampling depth of reads is invariable within a
segment. For example, in segment ri, we have sampled five reads, cor-
responding to three individuals, and two individuals have been sampled
twice. Therefore, the minimal and maximal number of chromosomes
sampled is nmin = 3 and nmax = 5, respectively.

Population genetics using shotgun sequences

Genome Research 1021
www.genome.org

 Cold Spring Harbor Laboratory Press on July 26, 2011 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


where ST is the total number of segregating sites summed over all
segments, and variables subscripted by r are calculated for the rth
segment; � is the error rate per base; Lr, mr, nr, nmax,r, nmin,r are the
length, the number of reads, the number of distinct chromo-
somes, and the minimum and the maximum number of distinct
chromosomes in segment r.

The assumption of errors occurring at a constant and inde-
pendent rate is not necessarily realistic for DNA sequence data,
but deviations from this assumption may not affect the analysis
much, as long as the analysis is done on a regional scale and
read-by-read variance of the error rate averages out over larger
regions. However, it is clearly desirable to develop more accurate
error models for particular types of data. Such error models can
be incorporated directly into the population genetic analysis by
modifying the expression for the expected number of errors in
the region.

Genome-wide estimates of nucleotide diversity in humans

For purposes of estimating �, we will use the original whole-
genome shotgun sequences by Celera Genomics (Venter et al.
2001) and the associated SNP-discovery data (see Methods) that
contains DNA from seven individuals. The SNPs in conjunction
with the mappings of the actual shotgun reads allowed us to
obtain genome-wide estimates of nucleotide diversity. We used a
window of 100 kb, sliding it by steps of 20 kb. The average se-
quence coverage within the windows was on average five reads
for each segment, which corresponds to approximately two chro-
mosomes. In order to quantify the statistical uncertainty around
our estimates, we conducted neutral coalescent simulations un-
der realistic recombination and mutation rates (see Methods).
The coefficient of variation in the estimate of � for 100-kb win-
dows for this simulated data ranged from 0.1 to 0.67 (Supple-
mental Fig. S1). This indicates that, although the average sample
size in number of chromosomes is low, there is useful informa-
tion regarding �̂ in 100-kb windows. On average, we estimate �̂ to
be 0.00163, a value somewhat higher than is generally cited, and
possible reasons for the difference are given below.

The effect of selection on �̂
in the human genome

Negative selection (e.g., background se-
lection) and positive selection (e.g., se-
lective sweeps due to hitch-hiking), re-
duce the average nucleotide diversity at
linked neutral sites (Begun and Aquadro
1992; Charlesworth et al. 1993). The
number of affected linked sites depends
on the recombination rate per site per
generation (�). Therefore, if either back-
ground selection (BS) or hitch-hiking
(HH) are common, regions of low re-
combination are expected to have a
lower diversity than regions with high
recombination.

Innan and Stephan (2003) sug-
gested a simple method to distinguish
between the two types of selection. This
method is based on two simplified equa-
tions that describe the reduction in neu-
tral diversity �0 under a model of BS and
HH. In the BS model

� = �0e−
u

� (4)

if � is not extremely low, the reduction in diversity due to back-
ground selection is well approximated by e-u/�, where u is the
deleterious mutation rate per base per generation. In the HH
model:

� = �0� �

� + �� (5)

the reduction of �0 due to selective sweeps depends mainly on �

and one additional factor �, which is a function of the frequency
and strength of selection. We fit each of these models to the data
using a simple least squares fit (see Methods). The parameter
estimates resulting from this fit are � = 6 � 10�11 and
�0 = 1.67 � 10�3 for the HH model; and u = 5 � 10�11 and
�0 = 1.67 � 10�3 for the BS model.

When we plot �̂ against �, there is a clear reduction at very
low recombination rates that fits rather well with both the BS-
and HH-model (Fig. 2A). However, this reduction in diversity at
low recombination rates is incompatible with neutral models,
including various demographic scenarios that predict no corre-
lation between recombination and diversity. Therefore, we sug-
gest that selection is indeed important in shaping variability in
the human genome.

In 1000 bootstrap samples of the data (see Methods), the
HH-model provided, in all but one case, a better fit than the
BS-model. We also simulated data under a BS model given the
estimated parameter values, and applied the same bootstrapping
procedure to each of the simulated data sets (Fig. 2B). In 73 out
of 100 simulated cases, the bootstrap support for the BS-model
was >0.5, and in all cases, the bootstrap support for the BS-model
was higher than in the real data. These results suggest that the
HH-model provides a better fit to the data than the BS-model,
and that the BS-model cannot fully explain the pattern observed
in the data. However, we emphasize that the BS-model used here
is very simple, and it makes a number of assumptions in addition
to the absence of selective sweeps. Our results should, therefore,

Figure 2. Relationship between recombination rate and diversity. Non-overlapping windows were
ordered according to recombination rate and sorted into bins of 100 windows. (A) The average �̂/d for
the bins was plotted against the average recombination rate as log(�), where � is the number of
recombinants per base per meiosis (red line). For these binned data, we also estimated the parameters
for a simple hitchhiking model (HH, cyan line) and a simple background selection model (BS, purple
line). �̂/d vs. log(�) is also drawn for 100 simulated data sets under the BS-model (black lines). (B) For
100 data sets simulated under the BS-model, we estimated the parameters for the HH- and BS-models.
Given these new estimates, we counted how often the BS-model fits better than the HH-model by
using the sum of squares and bootstrapping over the bins. In most cases, the BS-model fit consistently
better (bootstrap-value closer to 1); but for the real data, the HH-model gave a slightly better fit (cyan
arrow).
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not be taken as proof of absence of background selection in hu-
mans, but may suggest that the effect of selection in the genome
cannot be explained by the simple BS-model alone and that se-
lective sweeps might be the more dominant force that shapes
genetic diversity across the human genome.

Identifying outliers

In order to identify candidate regions for recent selective sweeps
and balancing selection, we conducted coalescent simulations in
a sliding window along the genome, taking the observed distri-
bution of sequence reads, local mutation rate estimated from
human–chimpanzee divergence (d), and local recombination
rate into account (see Methods). Furthermore, we did half of the
simulations under the best-fitting background selection model

(see above). The expected value of �, given these factors, is de-
noted by �E. The 324 and 80 regions in the genome had smaller
and larger values of �̂, respectively, than any of the 2000 simu-
lations for the region. The 10 regions with the lowest values of
�̂/�E are given in Table 1 and the 10 regions with the highest
values of �̂/�E are summarized in Supplemental Table S2. Regions
that have recently experienced a selective sweep should be
marked by a low �̂/�E. However, as the expected value of �E will be
calculated based on d, an increased d could have a similar effect.
Similarly, an increased �̂/�E may be indicative of balancing selec-
tion (Kreitman and Hudson 1991), but might also be caused by
misassemblies of the human shotgun reads, or reduced levels
divergence. We compare our results with other genome-wide
scans for selection in Table 2.

Table 1. Position of the 10 regions with the lowest �̂/�E within the human genome version hg16

Position on hg16 �̂/�E

Closest
gene Description Further overlapping genes

chr20:23533000-23953000 0.24 CST5 Cystatin cluster: Cysteine protease inhibitors of class II occur
in a variety of body fluids, such as saliva, tears, urine, and
seminal fluids.

CST9, CST3, CST4, CST1, CST2,
GGTLC1

chr3:97721789-97901789 0.26 EPHA6a Ephrin receptor A6: These tyrosine kinase receptors are
involved in axon guidance and are markers of cortex
patterning in mice.

chr10:286000-846000 0.26 DIP2C DIP2 disco-interacting protein 2 homolog C ZMYND11
chr12:78301663-78521663 0.27 SYT1 Synaptogamin I: The synaptotagmins are integral membrane

proteins of synaptic vesicles thought to serve as Ca(2+)
sensors in the process of vesicular trafficking and
exocytosis. Calcium binding to synaptotagmin I
participates in triggering neurotransmitter release at the
synapse.

PAWR

chr6:78821123-79201123 0.27 — No genes, CNP-loss in region
chr4:176570685-176790685 0.28 GPM6Aa Neuronal membrane glycoprotein M6-a
chr2:146125701-146385701 0.28 — No genes
chr1:156339832-156639832 0.28 CD1A The CD1 proteins mediate the presentation of primarily lipid

and glycolipid antigens of self or microbial origin to T
cells.

CD1D, CD1A, CD1C, CD1B,
CD1E, OR10T2

chr2:40528969-40788969 0.30 SLC8A1 SLC8A is a Na(+)-Ca(2+) ion exchanger that is primarily
located in the sarcolemma of the heart. It pumps calcium
out during relaxation.

chr5:133091683-133391683 0.31 FSTL4 Follistatin-related protein 4 precursor C5orf15, VDAC1

The closest gene to the 100-kb window with the lowest �̂/�E is reported if within 200 kb of the reported candidate region. The description was mostly
adapted from the Known Gene annotation of the genome browser (Hsu et al. 2006).
aGene does not overlap with reported region, but is within 200 kb.

Table 2. Number of nonoverlapping 100-kb windows that overlap with selected regions, as identified in other studies

All

Low High

No. P-value No. P-value

No. of 100-kb windows 23,179 743 — 1318 —
Ancestral ORD cluster (Aloni et al. 2006) 28 4 0.012 3 0.211
Recent sweeps in 100-kb region LD (Voight et al. 2006)a 668 19 0.657 48 0.107
Position of recent selection LD (Williamson et al. 2007)b 164 9 0.113 11 0.501
Recent selection average window-size 350 kb (Tang et al. 2007)c 751 45 <0.001 66 0.001
Clusters of fast evolving genes (Chimpanzee Sequencing and Analysis Consortium 2005) 14 3 0.009 3 0.042
Selected genes McDonald-Kreitman (Bustamante et al. 2005)d

Excess positive P < 0.025 252 16 0.010 13 0.891
Excess negative P > 0.975 714 28 0.279 71 <0.001

Selected genes (dN/dS) (Nielsen et al. 2005) 25 2 0.190 0 0.399

Here, windows with �̂/�E lower or higher than 95% of the simulated data, respectively, were compared. Significance of the overlap between high and
low �̂/�E windows and other studies was assessed using Fisher’s exact test.
aData from Supplementary Protocols 1–3 were merged to form unique genomic regions.
bData from Table 1 and Supplemental Table S1.
cData from Supplemental Tables S2–S9 were merged to form unique genomic regions.
dOverlap of data is based on mappings the RefSeq and Known Gene tables of the UCSC genome browser.
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Regions with high �̂/�E are candidates for balancing selec-
tion or they might contain more slightly deleterious variants, i.e.,
substitutions that can segregate within a population, but are un-
likely to become fixed. In protein-coding regions, both possibili-
ties result in an excess of nonsynonymous polymorphisms, as
can be detected in a McDonald-Kreitman test. Indeed, if we
match the high �̂/�E regions to genes identified in Bustamante et
al. (2005) to be under negative selection, we find them to be
significantly enriched (Table 2). Furthermore, the HLA-cluster on
chromosome 6 contains five regions with highly elevated �̂/�E

(Supplemental Fig. S4), of which one is the second highest overall
(Supplemental Table S2). This is encouraging because the HLA-
region has previously been shown to evolve under balancing se-
lection (Klitz et al. 1986; Erlich and Gyllensten 1991; Begovich et
al. 1992; Hughes et al. 1993). Furthermore, we also find that large
clusters of olfactory receptors (as annotated in Aloni et al. 2006
and with more than three human genes), exhibit unusually high
values of �̂/�E (Table 2). The largest cluster with 103 genes in
humans is located on chromosome 11. This region encompasses
∼1 Mb and contains five �̂/�E peaks (Supplemental Fig. S5). An-
other chromosome 11 olfactory receptor cluster has previously
been shown to be under positive selection (Clark et al. 2003;
Gilad et al. 2003; Nielsen et al. 2005). Further indication that
high regions may also have experienced selective sweeps is that
they show a significant overlap with the regions of recently se-
lected genes as identified by Tang et al. (2007).

A third possible explanation for elevated �̂/�E are copy num-
ber polymorphisms where a copy is gained. Indeed, the region
with the highest value of �̂/�E is surrounded by common copy
number polymorphisms (CNPs). The actual peak in �̂/�E does not
lie within a known copy number gain, suggesting that the in-
creased value of �̂/�E has not been inflated by a gain in copy
number in one or more individuals compared to the assembly.
However, CNPs may affect alignments, thereby inflating �̂.

Characterizing extreme �̂/�E regions

We summarize the results for gene-specific analyses of regions
with elevated or reduced values of �̂/�E by dividing genes into
different GO categories (Ashburner et al. 2000). RefSeq genes
were associated with the nonoverlapping windows, and if a win-
dow contained multiple genes with the same GO category, this
GO category was only counted once for this window. Thus, we
avoid GO categories from becoming significant, just because of
one cluster of genes. For example, unlike other studies, we do not
find the GO categories related to olfaction to be significant, al-
though individual OR clusters show clear signals. We find that all
three ontologies—biological process, cellular component, and
molecular function—show a significant enrichment of outlier re-
gions in certain GO categories (Supplemental Table S3). We show
a comprehensive summary of the results for what we consider
the most informative category, biological process, in Supplemen-
tal Table S5.

Regions with reduced �̂/�E contain an enrichment of catego-
ries traditionally associated with selective sweeps and positive
selection (Chimpanzee Sequencing and Analysis Consortium
2005; Nielsen et al. 2005; Gibbs et al. 2007), including the fol-
lowing immune response related categories: regulation of B cell
activation, B cell differentiation, and leukocyte chemotaxis
(Supplemental Table S5). Other immune-related categories and
categories involved in apoptosis are not among the most signif-
icant categories (Supplemental Table S4). One explanation for

this is that these categories are also more likely to have experi-
enced balancing selection, and hence also have an elevated �̂/�E.
This is true for several apoptosis related groups (Supplemental
Table S6).

The region in the genome with the lowest value of �̂/�E is the
cystatin cluster on chromosome 20 (Table 1). The cystatins in
this cluster are potent inhibitors of cysteine proteases, especially
cathepsin B. The cystatins in the middle of the �̂/�E valley be-
long to the S-cystatins (Supplemental Fig. S6), which are abun-
dant in saliva, but occur also in other body fluids such as tears.
Presumably, they have a protective function. However, this does
not appear to fully explain their abundance in saliva (Dickinson
2002).

The region with the second lowest value of �̂/� has only one
gene in its proximity, and that is the ephrin receptor A6 (Fig. 3).
Ephrin receptors are a large family of protein tyrosine kinase
receptors. They play an important role in axon guidance, espe-
cially during brain development (Yun et al. 2003). Furthermore,
ephrin receptors are involved in vasculogenesis and angiogenesis
(Cheng et al. 2002), and EPHA6 has been shown to be a regulator
of vascularization of genital tubercles (Shaut et al. 2007). The
protein sequence of EPHA6 is highly conserved from human to
chicken, and most of the variability occurs in the ligand-binding
domain. However, this domain is also completely conserved be-
tween humans and chimpanzees, suggesting that the most likely
target of selection was a regulatory change.

We think that these two loci might be interesting cases of
recent selection that are worthwhile to study in more depth.

Subcentromeric regions

Subcentromeric regions generally have very low recombination
rates (Yu et al. 2001; Kong et al. 2002). Consequently, centro-
meres may have a reduced level of diversity under both a model
of background selection and of selective sweeps. Additionally,
centromeric repeats are thought to be prone to meiotic drive
acting during female meiosis (for review, see Henikoff et al.
2001). Subcentromeric regions may, therefore, be affected by se-
lective sweeps more frequently than other genomic regions. A
previous scan for selective sweeps in the human genome (Wil-
liamson et al. 2007) found increased evidence for selective
sweeps around centromeric regions.

We define windows as centromeric if they overlap with the
chromosomal band labeled as centromeric in the UCSC genome
browser (http://genome.ucsc.edu). As expected, these windows
are associated with extremely low recombination rates (Fig. 4A).
Furthermore, �̂ appears to be reduced, while human–chimpanzee
divergence is increased relative to intrachromosomal regions
(Fig. 4B,C). Taking background selection and mutation rates into
account in the calculation of �E (Fig. 4D), we find that �̂ in sub-
centromeric regions is still significantly lower than expected
(MWU-test: n = 159, P = 1.5 � 10�6). This result strongly sug-
gests that selective sweeps are, in fact, more common in centro-
meric regions.

Such a picture could also emerge if the number of chromo-
somes (n) was overestimated due to assembly errors. As the num-
ber of reads (m) in the alignment is indeed elevated for the cen-
tromeres (Fig. 4C), this is a possible explanation. Therefore, we
excluded all centromeric regions with m among the 25% most
extreme values of m genome-wide. In this analysis �̂ still remains
significantly lower than expected (MWU-test: n = 112,
P = 0.009). Therefore, we believe that the reduction in centro-
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meric diversity is indeed due to positive selection, consistent
with the theory of a centromeric meiotic drive.

Subtelomeric regions

One of the unexplained results from the analysis of the chim-
panzee genome was the observation of increased divergence in
subtelomeric regions (Fig. 4C; Chimpanzee Sequencing and
Analysis Consortium 2005). Another hallmark of these regions is
a relatively high recombination rate (Fig.
4A; Kong et al. 2002). One possible ex-
planation for the high levels of diver-
gence is the mutagenic effect of recom-
bination (Lercher and Hurst 2002; Hell-
mann et al. 2003), identified as a
positive correlation between divergence
and recombination. This pattern appears
to be mediated at least in part by the
hypermutability of CpGs and the eleva-
tion of recombination in regions of high
GC content. Subtelomeric regions ap-
pear to fit this same pattern, with el-
evated divergence and recombination
rates. Dreszer et al. (2007) found evi-

dence that biased gene conversion has
major contributions to elevated substi-
tution rates in conjunction with high
GC content and recombination rates.
However, the effect of recombination
cannot be the only reason, as other re-
gions of the genome with similar recom-
bination rates have lower levels of diver-
gence than the subtelomeric regions
(MWU-test, telomeric vs. subsample in-
trachromosomal: n = 1175; P(d) < 10�15;
P(�) = 0.34, Supplemental Fig. S3).

As was the case for subcentromeric
regions, subtelomeric regions also show
a decrease in �̂/�E (MWU-test: n = 1175,
P < 10�15), possibly suggesting in-
creased levels of selective sweeps in telo-
meric regions. Unlike centromeres, telo-
meric repeats show no evidence of mei-
otic drive. However, telomeres are
enriched for segmental duplications (for
review, see Cheng et al. 2005; Riethman
et al. 2005), and hence, one could specu-
late that subtelomeric regions are hubs
for neofunctionalization of duplicate
genes and, therefore, more variants are
fixed due to positive selection.

Discussion

Our average estimate of �̂ = 0.00163, is
higher than in other studies. Halushka et
al. (1999) reported estimates of � based
on numbers of segregating sites for silent
substitutions of 0.0015 and for introns
of 0.00105. The estimates from the rese-
quenced data in the Seattle SNP data-
base (http://pga.gs.washington.edu/
summary_stats.html; Akey et al. 2004),

based on the average number of pairwise differences is 0.00085.
One explanation for the difference between the results by Akey et
al. (2004) and our results is that the Seattle SNPs data set only
includes genic regions. However, our estimate is also higher than
the estimate from 50 intergenic regions (Voight et al. 2005). A
slight difference in the estimates is expected, because our estima-
tor based on the number of segregating sites will give higher
estimates than the estimator based on pairwise differences in the

Figure 3. The area around the second lowest value of �̂/�E on chromosome 3. Vertical bars represent
the values for a 100-kb window positioned at their midpoint. (A) Plotted is �̂/�E, whereas the expected
value is either under a neutral or a background selection model, whatever was more conservative. The
colors of the bars indicate whether �̂/�E lie outside of a 95%, 96%, etc., confidence interval obtained
through simulations. (B) Pink triangles mark recombination hotspots; blue lines correspond to genes
from the RefSeq gene track of the UCSC genome browser. The closest gene is EPHA6. (C–E) The values
for �̂, human–chimpanzee divergence, and the recombination rate in cM/Mb are plotted.

Figure 4. Centromeres (cen) and Telomeres (tel) behave differently from intrachromosomal (ic)
regions in their recombination rates (A), diversity �̂ (B), human–chimpanzee divergence (C), and hence,
also in the predicted value �E (D). However, �̂ for centromeres and telomeres is smaller than �E.
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presence of a negative Tajima’s D value, as observed for the Se-
attle data and at least one population of the Voight data. Further,
Voight et al. (2005) report only diversity for the populations
separately, but not the overall diversity. Finally, as pointed out in
Johnson and Slatkin (2006), estimates of � may be biased when
quality values have been used to call SNPs. As our data have been
subject to an initial quality screening, it is likely that our data are
also affected by this bias. However, in the absence of regional
differences in the use of protocols to call SNPs, none of our con-
clusions should be affected by this bias.

Furthermore, our estimate of diversity was made without
correction for demographic influences. In part, this is because the
sample for the Celera Genomics study included an overdispersed
sampling of humans from the major geographic groups. There-
fore, we want to stress that the P-values and confidence intervals
that we obtain through the simulations are only exact if the
assumptions of our simulations were right. If we overestimate, �̂

or the individuals that we analyzed did not come from a Wright-
Fisher population but from a population with a more complex
demography, we may, for some demographic models, underesti-
mate the variance of �̂.

We examined the overlap between regions with low values
of �̂/�E and regions identified in other genome-wide screens for
positive selection. Voight et al. (2006) conducted a genome-wide
screen for selective sweeps based on haplotype structure. This
method has maximal power to detect ongoing selective sweeps,
while the reduction in diversity that we measure is strongest after
a sweep has just finished. Therefore, the lack of overlap in can-
didate regions identified by the two studies is not surprising
(Table 2). Next, we looked for overlap between our data and the
data by Williamson et al. (2007). Their test statistic is based on
the frequency spectrum at variable sites and, hence, their power
is also best for finished sweeps. However, since the statistic only
looks at variable sites, the power of this test for regions of
very low diversity will also be lower than in our test. This might
explain why we find so little overlap in candidate regions. An-
other possible cause is that our confidence intervals are widest
for regions of low recombination. Therefore, the average recom-
bination rate of our candidate regions is 1.87 cM/Mb, while the
two LD studies show an opposite trend (median recombination
rates: 0.76 and 1.2 cM/Mb). On the other hand, there is good
overlap between our candidate regions and regions identified in
a recent study contrasting patterns of LD among different popu-
lations to detect nearly complete selective sweeps (Tang et al.
2007).

Further, we find a significant overlap with the study by Bus-
tamante et al. (2005) and the clusters of positively selected genes
as identified by the Chimpanzee Sequencing and Analysis Con-
sortium (2005) (Table 2). Both studies use the ratio of nonsyn-
onymous to synonymous mutations in human–chimpanzee
alignments to detect selection within protein-coding genes. Bus-
tamante et al. additionally used ratios of nonsynonymous to syn-
onymous human diversity in an extension of the McDonald-
Kreitman test (McDonald and Kreitman 1991). If no selection
were acting in the genome, we would not expect a correlation
between diversity to divergence ratios and ratios of nonsynony-
mous to synonymous mutations. The strong correspondence be-
tween the studies, therefore, helps solidify the argument that
extreme values of �̂/�E, in fact, do provide evidence for positive
selection.

A number of factors can affect the analyses presented in
this study. The methods used for identifying SNPs and accom-

modating sequencing, assembly, and alignment errors may af-
fect local estimates of genetic diversity. Future studies may in-
corporate more specific and detailed modeling of errors based
on experimental evidence and genotype confidence scores. We
also notice that we used a very simple standard population ge-
netic model, assuming constant population sizes and no popu-
lation structure. Finally, the sample size is very low (seven indi-
viduals from diverse racial groups) with one individual con-
tributing a large proportion of the reads analyzed. However,
the main conclusions of the study stand and are unlikely to be
influenced by this: (1) tiled population genetic data can easily
be dealt with in population genetic analyses using appro-
priately modified composite likelihood methods, (2) the hu-
man genome shows a reduction in variability in regions of low
recombination that cannot be explained by possible muta-
genic effects of recombination, (3) both telomeres and centro-
meres show a decrease in the levels of diversity compared with
the expectation given between-species divergence and recom-
bination rate, (4) outlier analyses of variability identify a
number of candidate genes for both balancing and directional
selection including HLA and olfactory receptor clusters. How-
ever, our ability to reliably identify outlier regions may be chal-
lenged if there is an undetected regional variation in the error
rate.

While even this relatively simplistic approach to demogra-
phy and sequence errors will see immediate application, an ex-
citing challenge in future studies is to incorporate inference pro-
cedures for more elaborate and realistic models. This can be
achieved using the composite likelihood framework outlined in
this study.

Methods

SNPs from shotgun data
This procedure was described in dbSNP under http://www.ncbi.
nlm.nih.gov/projects/SNP/snp_viewTable.cgi?method_id=2929.
Briefly, potential nucleotide variants from the WGA2 align-
ment were identified using only the Celera reads. Potential
nucleotide variants need to pass the sequence quality value
(QV), neighbor quality value (NQV), and the heterozygosity
check. The default QV value is >23 for the polymorphic base and
>21 for the minimal neighbor QV (4 bp). For the deep covered
minor alleles, the QV threshold is adjusted lower. Every sup-
ported minor allele will decrease the threshold, but the minimal
QV cutoff is not below 16. During the heterozygosity check, se-
quences containing more than two alleles per individual were
filtered out.

The locations of all reads were mapped relative to the as-
sembly. We then divided the shotgun assembly and associated
SNPs into segments according to shotgun read ends (Fig. 1). In
order to be able to use annotations based on the public human
genome version (hg16), we placed the segments on this assem-
bly.

Error rate �

Based on Altshuler et al. (2000), we assumed that the error rate
� = 1/35,000, which most likely corresponds to an upper bound.
If we assume that the error rate is approximately constant, the
actual value of � influences � linearly. Further, the number of
expected errors is on average 20-fold lower than our SNP counts;
hence, the relative magnitude of � should be robust with respect
to assumptions about �.
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Human–chimpanzee divergence
We downloaded the axt—alignments between the human ge-
nome hg16 and the chimpanzee genome panTro2 (http://
hgdownload.cse.ucsc.edu/goldenPath/hg16/vsPanTro1/
axtRBestNet/). For each window, we counted the number of bases
that differed and divided them by the number of bases that could
be compared.

Recombination rates
We downloaded genetic and physical distances from http://
www.stats.ox.ac.uk/mathgen/Recombination.html and calcu-
lated the recombination rates as slopes from regressing genetic
on physical distance for windows of 500 kb centered on a given
100-kb window. Here, estimates of recombination rate are based
on patterns of LD; therefore, there may be concerns that the
estimates of recombination rates depend on SNP density. How-
ever, SNP density mainly influences estimates of variation in re-
combination rate (e.g., inferences of recombination hotspots)
and not so much the average rate over large distances as exam-
ined here. Also, the difference in recombination rate estimates
between pedigree map (Kong et al. 2002) and the LD map does
not vary systematically with �̂ (Supplemental Fig. S2). Hence, it
seems like an acceptable approximation to use the LD map for
this purpose.

Estimating �

The estimator of � we develop is a modification of Watterson’s
(Watterson 1975) classical estimator applicable to the tiled shot-
gun sequencing data. It can be derived as a composite likelihood
estimator, but we will provide the simpler derivation using a
method of moments estimator. To this end, we divide the ge-
nome into v segments, where the v � 1 divisions between seg-
ments are chosen to fall at the points where a fragment starts or
ends (Fig. 1). The number of sequences sampled is, therefore,
constant among all nucleotide positions within a segment. For
example, in an alignment of two sequences, which overlap each
other, there can be three such segments. To write down simple
expressions for p(n = j) for a particular segment, we need to in-
troduce some additional notation to distinguish between the
number of reads sampled, the number of distinct chromosomes
sampled, the number of reads from an individual, the number
of distinct chromosomes from an individual, etc. Let x represent
one segment. We can think of x as a set of equivalence classes,
x1, x2, . . . , each representing sequences sampled from the
same (diploid) individual. Let |x| be the number of equivalence
classes (individuals) in x and |xi| be the number of elements
(sequencing reads) in equivalence class i, i.e., |xi| is the number of
sequencing reads from individual i, and |x| is the number of
individuals. We assume throughout that the reads are labeled
with regard to which individual they come from. Also, n and
nmin = |x| represent the number of distinct chromosomes (al-
though possibly identical at the nucleotide level) and minimum
number of distinct chromosomes, respectively, in the segment.
The chance that an individual with |xi| � 1 reads is represented
by one or two chromosomes in the alignment is 0.5| xi| �1 and 1 �

0.5| xi| �1, respectively. Then, the probability of n = j is given by
summing over all the possible ways the number of distinct reads
among individuals represented in the alignment could sum up
to j:

p�n = j� = �
h1 = 0

1

�
h2 = 0

1

... �
h|x| = 0

1

�I�nmin + �
i=1

|x|

hi = j��
i=1

|x|

|hi − 0.5|xi| − 1|�

(6)

where I(. . .) is an indicator function. Even for large samples, this
expression can be calculated fast using a dynamic programming
algorithm.

For n chromosomes, in the absence of sequencing errors and
assuming an infinitely many sites model (Watterson 1975), the
expected number of segregating sites in a segment of length L is
(Watterson 1975) L(�∑n�1

i=1 (1/i)). The expected number in a tiled
alignment is then obtained similarly by summing over all pos-
sible values of n. The expected number or false SNPs introduced
by sequencing errors is L�mI(m > 1) + O(�2) as � → 0, where � is
the sequencing error rate per nucleotide and m is the total num-
ber of reads in the segment. Assuming that the error rate is low
enough that two sequencing errors in the same site can be ig-
nored, the expected number of segregating sites for tiled data in
an alignment segment is:

E�S� = L�� �
j=nmin

nmax

p�n = j��
i=1

j−1 1
i

+ �mI�m > 1�� (7)

Note that this assumes that errors occur uniformly and indepen-
dently of neighboring nucleotides. From this, an unbiased esti-
mator of �̂ similar to the Watterson (1975) estimator can be ob-
tained by rearranging (Equation 2) and summing over alignment
segments (Equation 3).

Confidence intervals for �̂

The variance in �̂ cannot be obtained analytically in the presence
of recombination, even for complete data that has not been ob-
tained by shotgun sequencing. Only in the presence of no re-
combination or full recombination, i.e., no linkage disequilib-
rium among SNPs, can formulas for the variance be obtained.
Such formulas can also be derived for tiled shotgun data, but are
not of much practical use, as linkage disequilibrium is indeed
widely observed in most data. Our approach for the estimation of
confidence intervals is, therefore, based on simulating data, tak-
ing into account variation in local recombination rates, sequenc-
ing errors, and the number of reads sampled for any particular
genomic segment. To this end, we used the program ms to do
coalescent simulations (Hudson 2002) under the standard neu-
tral model and a simple background selection model, which will
be described below. After we obtain the sample sequences from
the coalescent simulations, we sample “reads” from those se-
quences in exactly the same way as they were obtained from the
Celera data, and then calculate �̂ as described.

Parameter estimation under selection models
In order to estimate the selection parameters � and u, we need to
correct for variation in �0 due to mutation rate variation. To this
end, we scaled �0 using a scalar ci for window i based on estimates
of chimpanzee–human divergence as proxies for mutation rate
variation. Estimates of � for each window were calculated from
the Myers-map (Myers et al. 2005). Because these simple models
assume that the strength and frequency of positive and negative
selection is constant across the genome, we decided to reduce the
noise by binning the data according to recombination rates. We
sorted nonoverlapping windows according to their recombina-
tion rate into bins of 100. Then, we fitted the models of selection
described in Equations 4 and 5 to the binned data, thus obtaining
estimates of �0, �, and u.

The model was fitted using the Nelder-Mead Simplex algo-
rithm as implemented in the Gnu Scientific library (http://
www.gnu.org/software/gsl/) using least squares as a test-statistic.
We also attempted to fit the model to unbinned data; however,
the model fit, as assessed by a simple sum of squares, was always
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inferior to that obtained with summarized data. We also tried a
more complicated model of background selection that could also
accommodate variation in recombination rates across the flank-
ing regions of each window. Again, as for the simple model and
the unbinned data, the more complicated model failed to fit the
data better.

In order to compare the fit of the BS and HH models, we
generated 1000 bootstrap samples over bins and counted how
often the least squares statistics was better for either the BS or the
HH-model.

Simulations under the background selection and a neutral
model
We used the program ms for all coalescent simulations (Hudson
2002). For coalescent simulations under a background selection
model, we reduced the effective population size by e–u/�, where u
is the deleterious mutation rate per generation per base pair and
� is the number of crossovers per generation per base pair. For
each window i, we simulated for �E = �0e�u/�ici, where �0 is the
average diversity. ci is a scalar allowing variation in the mutation
rate, calculated as ci = di/d, whereas di is the human–chimpanzee
divergence of window i and d is the mean divergence.

Thus, we simulated 14 chromosomes. We then subsampled
segments from these chromosomes, corresponding to the seg-
ments obtained from the Celera shotgun reads. The probability
that both chromosomes from an individual were sampled was
taken as p = 1 � 0.5xrj�1, where xrj is the number of reads from
individual j in segment r.

To simulate sequencing errors, we added Se errors drawn
from a Poisson distribution with mean �∑v

r=1LrmrI(mr > 1), where
Lr is the length of the segment r in bp, m is the number of reads
in segment r, and I is and indicator function.

Outlier analysis
In order to identify candidate regions for recent selective sweeps
and balancing selection, we conducted 200 coalescent simula-
tions (100 under the standard neutral and 100 under a BS-model)
for each 100-kb window, sliding by 20 kb, taking the observed
distribution of sequence reads in each window into account, and
using a window-specific value of � to drive the simulations. We
identified all windows with observed values of �̂ falling outside
the distributions of �̂ in the simulated data under both neutrality
and background selection. Those windows were merged with all
adjacent windows where �̂ fell among the 5% most extreme val-
ues on either side in the simulated data. For the resulting 1046
regions with elevated values and 589 regions with reduced values
of �̂ we conducted another 2000 simulations to get a more precise
estimate of the P-value (Supplemental Table S1).

Gene Ontology analysis
All locuslink genes overlapping with the 1046 high or 589 low
regions as well as all nonoverlapping 100-kb windows outside of
these regions were identified. The locuslink identifiers were then
used in BioMart (Kasprzyk et al. 2004) to associate locuslink iden-
tifiers with Gene Ontology groups (GO) (Ashburner et al. 2000).
We only took reviewed annotations into account, i.e., we disre-
garded annotations with evidence code IEA and ND. The Gene
Ontology version from May 2007 was used. For each region/
window only a nonredundant set of GO-identifiers was kept. To
identify GO-groups with over-representations of either high �̂/�E

or low �̂/�E regions, we used the program FUNC (Prufer et al.
2007). More specifically, we used the hypergeometric test, requir-
ing a minimum of 10 windows associated with a given node.
After obtaining the general statistics for each ontology, we made

use of the refinement option in FUNC that keeps only the most
specific, significant categories; higher categories that are solely
significant because of genes from a significant subordinate cat-
egory are removed.
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