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ABSTRACT

Motivation: Finding the regulatory modules for transcription factors

binding is an important step in elucidating the complex molecular

mechanisms underlying regulation of gene expression. There are

numerous methods available for solving this problem, however,

very few of them take advantage of the increasing availability of

comparative genomic data.

Results: We develop a method for finding regulatory modules in

Eukaryotic species using phylogenetic data. Using computer

simulations and analysis of real data, we show that the use of

phylogenetic hidden Markov model can lead to an increase in

accuracy of prediction over methods that do not take advantage

of the data from multiple species.

Availability: The new method is made accessible under GPL in a

new publicly available JAVA program: EvoPromoter. It can be

downloaded at http://sourceforge.net/projects/evopromoter/

Contact: sww8@cornell.edu

1 INTRODUCTION

The regulation of gene expression is one of the molecular

processes of greatest scientific interest. For example, under-

standing gene regulation is fundamental for understanding

developmental processes (e.g. (Berman et al., 2002; Crickmore

and Mann, 2006; Kassis et al., 1989; Potter et al., 2000;

Schroeder et al., 2004)). Much research has been conducted

with Drosophila due to its relatively well-understood develop-

ment process and the conservation of developmental genes

between Drosophila and humans.
The initial step of gene expression is controlled by transcrip-

tion regulation; it starts when transcription factors (TFs) bind

to their corresponding transcription factor binding sites

(TFBSs). TFBSs are typically 5–15 base pairs long and they

tend to have degenerate sequences. In bioinformatics research,

they are typically represented by position weight matrices

(PWMs). These matrices are generated from aligned experi-

mentally verified sequences. Due to their functional

importance, detecting TFBSs in upstream regulatory regions

has been an important research focus for decades (Berman,

et al. 2002).

TFBSs tend to cluster together to form cis-regulatory

modules (CRMs). Finding CRMs is an important first step

into studying how gene expression regulation works. The exist-

ing approaches for identifying CRMs can be roughly classified

into three approaches: (1) identification of regions in a genome

with a significant number of TFBSs. (2) Identification of

putative regulatory regions that are significantly more

conserved than the nearby non-coding regions (phylogenetic

footprinting). (3) Identification of the regulatory regions of

genes that are regulated by the same set of TFs (Blanchette

et al., 2006). Note that these approaches do not have to be

carried out separately; they can be combined to enhance the

accuracy and power of the algorithms.
The first approach can be further classified into two distinct

methods. The first type is knowledge-based methods (Duret

and Bucher, 1997), based on some prior knowledge of the

characteristics of the TFBSs (e.g. the positional frequencies of

each position in the TFBS, and/or which TFs work together,

etc.). Most of the methods in this category make use of the

previously known PWMs. For example, Frith et al. (2001)

derived a hidden Markov Model (HMM) to specifically model

the intra- and inter-CRM regions, as well as the CRM regions

in a single sequence (Frith et al., 2001).
The second kind of methods in this category are the ab initio

methods (Duret and Bucher, 1997). This kind of methods

assume no prior knowledge of the TPBSs and only makes use of

the content differences in the input sequences. A simple and

elegant method was presented by Chan and Kibler (Chan and

Kibler, 2005), where they train their program on the hexamer

frequencies in CRMs and no-CRMs. They found that their

method performs very well in finding CRMs in gap and

pair-rule genes in Drosophila compared with other CRM

predictive tools.
The phylogenetic footprinting method is also popular in

finding regulatory elements that are conserved among species

(Duret and Bucher, 1997; Loots et al., 2000; McGuire et al.,

2000; Wang and Stormo, 2005). Recently, Pierstorff et al.

(2006) developed a method that finds CRMs by identifying*To whom correspondence should be addressed.
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regions with an excess of specific local short ungapped aligned
sequences (Pierstorff et al., 2006). The authors demonstrated
that the method finds more CRMs than any other methods they

compared to.
A few groups attempted to combine both approaches for

better prediction accuracies. Sinha et al. (2003) developed a

method that combines the benefits from both approaches
(Sinha et al., 2003). Their method, Stubb uses an HMM to
model the correlations between TFBSs, and at the same time

uses conserved sequence information from multiple sequences
to enhance the prediction. However, the method handles two
sequences at a time and does not take the phylogenetic tree

topology into account. Grad et al. (2004) proposed a method
that first identifies potential CRMs using phylogenetic foot-
printing, and then use these potential hits to generate a model

for searching CRMs in the genome. The biggest advantage of
the method is that no previous knowledge is needed.
Here we extend the HMM to comparative data using a

phylogenetic HMM (phylo-HMM) (Siepel and Haussler, 2004).
By allowing the HMM to emit phylogenetic evolutionary

models, instead of nucleotide frequencies, the HMM approach
is extended for the use on comparative data. This method,
therefore, rigorously combines the (‘vertical’) information used

in phylogenetic footprinting with the (‘horizontal’) information
used in HMMs for knowledge-based CRM prediction. The idea
of combining phylogenetic information and HMM has been

around for more than a decade (Felsenstein and Churchill,
1996; Yang, 1995). However, it was not until recently that the
phylo-HMMs drew significant research attention, likely to be

contributed by the large amount completed genome sequences.
For instance, as of 21 September 2006, the Genomes OnLine
Database has over 420 completed genome available online,

and over 40 of them are eukaryotic genomes (http://
www.genomesonline.org/, 2006). A few recent interesting

applications include genome-wide search for evolutionary
conserved elements in vertebrate, insect, worm and yeast
(Siepel et al., 2005); annotation of viral genomes (McCauley

and Hein, 2006); identification of alternatively spliced sites
(Allen and Salzberg, 2006) and of homologous proteins
(Qian and Goldstein, 2004).

2 METHODS

2.1 The hidden Markov model

The model used here (Fig. 1) is among the simplest imaginable models

for TFBS and CRM prediction. There are two types of states in our

model: the silent states and the emitting states. The silent states do not

emit symbols while the emitting states emit one or more columns of

symbols at a single event. The silent states are included for a clean

representation of the HMM even though we could have constructed an

equivalent model without them. The state space of the model consists of

three silent states, namely, start, intra and end state. The emitting states

include the background state and the TFBS states. The chain has to

start with the start state and end with the end state. The emitting states

are not accessible from each other and have to go through the non-

emitting intra state. The background state emits a single column of

nucleotides according to the background substitution matrix and the

phylogenetic tree. Each TFBS state emits multiple columns of

nucleotides at each instance. In this model, the length of each TFBS

state equals the number of sites in the TFBS as indels are not allowed.

More formally, our phylogenetic HMM is associated with a

phylogenetic tree T, its state space consists of Sb, S1, S2 . . .Sn, where

Sb is the background state and the rest are the TFBS states, and

n¼number of TFBSs of interest. It is also associated with background

substitution matrix Mb, substitution matrices for each site in each

TFBS state M11, M12 . . .M1m, M21 . . .M2m . . .Mk1 . . .Mkm . . .Mnm,

where km¼ number of sites in TFBS k, and the transition probabilities

Pij’s between the states i and j. Each site in each TFBS emits a column

of nucleotides according to its own substitution matrix Mkl and the

phylogenetic tree T. In practice, each site is a ‘state’ in the traditional

HMM sense and the transition probabilities are set to 1 for consecutive

sites in a TFBS.

2.2 Substitution models

Given the substitution matrix for state i, and the phylogenetic tree T,

the likelihood of an observed column P(X| Si, T) can be calculated using

Felsenstein’s algorithm (Felsenstein, 1991). When there are one or more

gaps in the column of the alignment, the likelihood is set to 1 for each

of the letters at the gap.

The background substitution matrix can be represented by any

nucleotide substitution model. Here, we use the HKY85 model

(Hasegawa et al., 1985) as it is simple and yet captures several of

the most important features on nucleotide evolution: uneven base

composition and different rates of transition and transversion.

The model parameters (base frequencies and the transition/transversion

rate ratio) can be estimated from the data using various phylogenetic

software [e.g. PAML (Yang, 1997), Phylip (Felsenstein, 2005),

PAUP*(Swofford, 1998), etc.). To obtain the substitution matrix of

each column in the motif of interest, we have adopted the approach

used in Moses et al. (2004), where the Halpern and Bruno (HB) model

(Halpern and Bruno, 1998) is used to convert the position-specific

nucleotide frequencies in each column of the motif into its correspond-

ing substitution matrix. Using the notation from (Moses et al., 2004),

the substitution rate going from nucleotide a to nucleotide b in the

ith column of the motif is given by:

RðiÞab ¼
Qab

log
fibQba
fiaQab

� �

1�
fiaQab
fibQba

if fiaQab 6¼ fibQba

Qab if fiaQab ¼ fibQba

8>><
>>:

ð1Þ

Fig. 1. The HMM. Rectangular boxes represents emitting states and

the round shapes represent silent states. A solid line with an arrow

represents a positive probability of going from one state to another.
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Where Q is the background substitution matrix, i is position in the

TFBS (runs from 1 to the length of the TFBS) and fia is the probability

of observing nucleotide a in the ith column of the TFBS. This can be

obtained from the TFBS PWM. Note that the new transition matrix R

is also time reversible.

2.3 EvoPromoter

These evolutionary models were implemented in the program

EvoPromoter. The program was implemented in JavaTM 1.5 and uses

BioJava libraries (http://www.biojava.org, 2006). It reads in the model

specification in an XML file and is, therefore, very flexible allowing

exploration of multiple different HMMs.

The workflow of EvoPromoter is shown in Figure 2. The user inputs

two files: alignment file for the sequences of interest, and the XML file

of parameters and model specification. The user specifies the

phylogenetic tree, parameter values for the transition/transversion

bias �, the background base frequencies, the PWMs for each TFBS, the

sliding window size and the step size. EvoPromoter is constructed to

work as automated as possible; while it is possible to manually set the

transition probabilities between each state in EvoPromoter, or train

it using real data; the default option of EvoPromoter is to use the

Baum–Welch algorithm (Baum, 1972) to self-train the transition

probabilities in the HMM model. The self-training procedure termi-

nates when the difference of log-likelihoods in two consecutive

iterations is less than the threshold 10�5. EvoPromoter then finds the

Viterbi paths on the forward and backwards strand using the trained

parameters. A sliding window is then scanned through the Viterbi paths

with pre-specified window size and step size. The mean and SD of

number of predicted TFBSs is calculated and those windows that have

number of TFBSs greater than one SD from the mean are considered

being within a CRM. Finally, the overlapping ‘CRM’ windows are

concatenated and the result is returned.

2.4 Closely Related Models

Our model presented here is quite similar to the MCAST model (Bailey

and Noble, 2003), except that we only have one silent state and one

background state. On the other hand, MCAST has two silent states and

two background states. It distinguishes background states that are

between CRMs and within CRMs. The two models also differ in the

calculation of the scores for each state. In our model, the scores are

the log-likelihoods of the observed data given the evolutionary model of

the state. In MCAST, the scores are calculated in two steps: first, the

log-odds ratio of the TFBS state against the background state is

calculated, denoted by s; second, the P-score is calculated by taking the

negative value of the log-odds ratio of the P-value of s and a P-value

threshold defined by the user. The P-value of s is calculated as the

probability of obtaining a random sequence with a score as high, or

higher, than the observed score. The calculation procedure is described

in detail in Bailey and Gribskov (1998). The P-value threshold is fixed

for all TFBS states. When the p-score is negative the state transition is

not allowed. For comparison, we also ran EvoPromoter with the

simplified MCAST HMM model, i.e. transitions between states are

controlled by the transition probabilities only but not the P-scores.

MSCAN (Alkema et al., 2004; Johansson et al., 2003) employs

a sliding window approach. The P-value of a particular TFBS hit is

calculated using the PWM of the TFBS and also the background

distribution in the window. It then calculates k-hits score in the

window, which is the combined significance of all the hits in the

window. The advantage of this approach is that the algorithm does not

have to be trained.

MONKEY (Moses et al., 2004) was the first that used the Halpern

and Bruno (HB) model (Halpern and Bruno, 1998) to model the

TFBSs. They calculated P-values of each potential TFBS being a true

TFBS and outputs the ones with significant P-values. On the

other hand, EvoPromoter finds the transition probabilities for each

TFBS by self-training. With the simple HMM model we use,

EvoPromoter predicts the exact same set of TFBSs with the set of

transition probabilities when matching the significance level used

in MONKEY.

2.5 Simulation

We carried out a simulation study to verify our method. All simulations

were carried out using CisEvolver (Pollard et al., 2006b). The

simulation procedure is described below. Table 1 shows the actual

values used.

Fig. 2. The workflow of EvoPromoter illustrated. Parallelograms

indicate user inputs and rectangles indicate a process in the program.
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(1) Overall 10 sets of aligned nucleotide sequences, with ancestor

sequences being L bp long were simulated according to the

HKY85 model (Hasegawa et al., 1985) with background

frequencies (�a �c �G �T), transition/transversion bias �, indel
rates R and the phylogenetic tree T obtained from (Pollard et al.,

2006a).

(2) For each set of the sequences, C aligned CRMs (ancestor

sequences W bp long) were used to substitute part of the original

sequences. The start positions of substitution were randomly

selected according to a uniform distribution. If the difference of

two consecutive start positions was shorter than the upstream

CRM being inserted, another set was drawn until there are no

overlapping CRMs.

(3) For each set of CRM, the nine TFBSs were simulated with the

same density d and evolved with the Halpurn Bruno 1998 (HB98)

model (Halpern and Bruno, 1998). Outside of the TFBS regions,

sequences were simulated with the HKY85 model with back-

ground frequencies (�a �c �G �T), transition/transversion bias �,

indel rates R and the phylogenetic tree T.

The data was analyzed with the simple EvoPromoter model with their

true alignment, the alignment by DIALIGNþCHAOS, and with the

MCAST model, with outputs refers to the locations in Drosophila

melanogaster The D.melanogaster sequences were also analyzed by

MSCAN and MCAST.

2.6 Performance measure

We measured the performance using the following two measures,

CRM level and nucleotide level, defined in Pierstorff et al., (2006).

(1) Sensitivity and positive predictive values (PPVs) of the locations of

the predicted CRMs at the CRM level. As in Chan and Kibler

(2005), a match is declared if a predicted CRM and a known

CRM overlap by 50 bp. Following (Chan and Kibler, 2005),

we calculated the number of CRMs recovered by each algorithm

by counting the number of known CRMs that overlap with the

predicted CRMs. The number of true positives (TP) is defined as

the number of CRMs predicted that overlap with the known

CRMs. The number of false negatives (FN) is the number of

known CRMs with no overlap with predicted CRMs. Sensitivity

is defined as the proportion of CRMs recovered over the total

number of known CRMs [TP/(TPþFN)]. To calculate specifi-

city, we needed the number of CRMs that are true negatives,

which were not applicable in this case and hence not used. PPV is

defined as TP/(TPþFP); which can be interpreted as the

probability that the predicted CRM is a true one. Notice that

we were using the known CRMs compiled by Schroeder et al.,

(2004) to represent the true positive set. As shown in Pierstorff

et al. (2006), the known set by Chan and Kibler (2005) does not

cover all the true CRMs and hence the true PPV values were

probably underestimated.

(2) Sensitivity, specificity and PPVs of the locations of the predicted

CRMs at the nucleotide level. Here we considered all nucleotide

positions in the sequence, and a match was declared if

a nucleotide site was predicted to be in a CRM and it was

indeed within a known or simulated CRM. TP was this case the

number of bases predicted to be CRM that overlap with known

CRMs. TN was the number of bases that were predicted to be

not in a CRM which were truly not in a known CRM. FP was

False Positives, i.e. the number of bases that are predicted to

be in a CRM but do not overlap with any known CRM.

The number of FN was the number of bases that were predicted

to not be in a CRM but overlap with a known CRM. Sensitivity

and PPV were defined earlier, while specificity was defined as

TN/(TNþFP).

3 RESULTS

We compared the performance of EvoPromoter with MCAST

(Bailey and Noble, 2003) and MSCAN (Alkema et al., 2004),

which both use the PWM information from known TFBSs.

These two programs use more sophisticated models horizon-

tally (along the sequence) but do not use the phylogenetic

information.

3.1 Biological data

We chose to test our method using early developmental genes

in Drosophila because the system is relatively well studied and

understood. We looked at the same 16 genes that were used in

(Chan and Kibler, 2005) because they have known CRMs.

The upstream 10 kb region of D.melanogaster from these genes

were downloaded using GBrowse in FlyBase (http://flybase.

org/cgi-bin/gbrowse/, 2006). The corresponding regions in the

other four species (D.ananassae, D.pseudoobscura, D.virilis and

D.grimshawi) were obtained by performing a BLAT online

search at the UCSC
Genome Bioinformatics Site (Kent, 2002). The sequences

were then aligned by the CHAOSþDIALIGN web service

(Brudno et al., 2003). The phylogenetic relationship were

obtained from Pollard et al. (2006a) and the phylogenetic tree

of the five Drosophila species used is shown in Figure 3. Using

the HKY85 model in the program baseml in the PAML

package (Yang, 1997), we obtained the maximum likelihood

estimates for tree lengths and the transition/transversion rate

ratio for each set of aligned sequences. Unfortunately, for eight

of the genes, the pairwise distances among the sequences were

out of the PAML predefined range for its likelihood analysis.

The level of divergence was hence too high for our analysis and

these data were discarded. We were then left with eight genes

to study; namely, Empty spiracles (ems), Even-skipped (eve),

Table 1. Parameters used in the simulation study

Parameter(s) Description Value(s)

�a �c �G �T Background frequencies

of the nucleotides

�a¼�T¼ 0.3

�c �G¼ 0.2

� transition/transversion bias 2.0

T Phylogenetic tree (((dmel:0.61410,

dana:0.6622):0.3237,

dpse:0.59585):0.35745,

(dvir:0.47455,

dgri:0.51015):0.3434);

W Size of CRM 500 bp

R Indel rates See (Pollard et al., 2006b)

L Total sequence length 10 kb

C Number of CRMs

in a sequence

3

d Density of TFBSs 0.003
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Fushi-Tarazu (ftz), Hairy (h), Hunchback (hb), Knirps (Kni),

Paired (prd) and Runt (runt). Three of these genes do not have

known CRMs in the upstream 10 kb region (hb, kni and prd).

We included these three genes for calculating the sensitivity and

PPVs of the three algorithms in finding approximate locations

for the known CRMs, but they were not used in calculating

these measures in terms of exact locations. The position

frequency matrices of the nine TFBSs used were the same

ones used in Schroeder et al. (2004), namely, Bicoid (Bcd),

Hunchback (Hb), Caudal(Cad), the Torso-response element

(TorRE), Stat92E (D-Stat), Kruppel (Kr), Knirps (Kni),

Giant (Gt) and Tailless (Tll).
The performance of EvoPromoter, MCAST and MSCAN

are summarized in Tables 2 and 3. Table 2 shows the sensitivity

and PPVs of the three algorithms in discovering locations of the

known CRMs at the CRM level. The same comparison was

also done in Chan and Kibler (2005). The performances of the

three algorithms are quite similar although EvoPromoter

has a slightly higher sensitivity in discovering known CRMs

and has a slightly higher PPV. In terms of finding the locations

of the CRMs at the nucleotide level, EvoPromoter’s perfor-

mance varied in the five genes but in general is a bit lower

than the other two methods. It indicates that EvoPromoter

is perhaps not as good in picking out the exact boundary

of the CRMs and it could be due to errors in alignment of

the genes.

3.2 Simulated data

The analysis of the 10 simulated data sets is summarized

in Tables 4 and 5. When the correct alignment was used, at

the CRM level, EvoPromoter was able to detect 28 out of

Fig. 3. The phylogenetic tree of the five Drosophila species used in the

data analysis.

Table 2. Comparison of the predictive power of EvoPromoter,

MCAST and MSCAN on finding CRM locations at the CRM level

in upstream region of Drosophila development genes, measured by

sensitivity and PPV

CRMs

recovered

Number

of CRMs

Sensitivity TPs Number

of CRMs

predicted

PPV

Evopromoter 11 15 73.33% 9 34 26.47%

MCAST 10 15 66.67% 8 66 12.12%

MSCAN 8 15 53.33% 7 30 23.33%

Table 3. Comparison of the predictive power of EvoPromoter,

MCAST and MSCAN for finding CRM locations at the nucleotide

level in upstream region of Drosophila developmental genes, as

measured by sensitivity, specificity and PPV

Gene CRMs Measure EvoPromoter MCAST MSCAN

ems 2 Sensitivity 37.53% 35.47% 30.81%

Specificity 45.11% 68.27% 93.46%

PPV 11.13% 16.99% 46.31%

eve 2 Sensitivity 21.93% 81.60% 58.49%

Specificity 65.39% 73.72% 93.17%

PPV 8.45% 31.15% 55.52%

ftz 3 Sensitivity 36.58% 9.75% 0.00%

Specificity 69.76% 91.19% 97.31%

PPV 21.27% 19.82% 0.00%

h 4 Sensitivity 85.09% 92.15% 55.53%

Specificity 75.66% 72.20% 83.20%

PPV 60.79% 59.51% 59.44%

run 3 Sensitivity 19.30% 39.00% 33.42%

Specificity 68.18% 55.76% 69.56%

PPV 50.25% 59.48% 64.64%

Table 4. Comparison of the predictive power of EvoPromoter,

MCAST and MSCAN on finding CRM locations at the CRM level

in simulated data, measured by sensitivity and PPV

Algorithm CRMs

recovered

CRMs Sensitivity TP CRMs

predicted

PPV

EvoPromoter1 28 30 93.33% 19 20 95.00%

EvoPromoter2 20 30 66.67% 17 26 65.39%

EvoPromoter3 29 30 96.67% 22 28 78.57%

MCAST 17 30 56.67% 15 102 14.71%

MSCAN 23 30 76.67% 21 31 67.74%

1The correct simulated alignment was used.
2The CHAOSþDIALIGN alignments on the simulated data were used.
3EvoPromoter with the MCAST model was used.
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the 30 implanted CRMs (high sensitivity) and only has one

falsely identified CRM (high specificity). The number of CRMs

predicted by EvoPromoter is less than the number of true

CRMs. At a closer look, it was due to some of the simulated

CRMs being right next to each other and EvoPromoter

combining the two as one big CRM. At the nucleotide level,

EvoPromoter also achieved much higher sensitivity than the

MCAST and MSCAN, and comparable specificity and PPV,

showing good predictive power when comparative data were

used. We also showed that the performance of EvoPromoter is

enhanced when a more complicated HMM model was used.
On the other hand, when we used the DIALIGN-CHAOS

(Brudno et al., 2003) alignments we obtained using the

default options of the simulated data, the performance for

EvoPromoter significantly decreased, indicating that align-

ments play an important role on how well the software

performs.

4 DISCUSSION

Our study showed that phylogenetic information could be

used to improve the prediction of CRMs. As a proof of

concept, we implemented a simple HMM across the aligned

sequences, which is far simpler than the ones used in

MCAST(Bailey and Noble, 2003), yet it still achieved a better

performance. Note that the horizontal HMM (across the

sequence) can be easily modified by altering the Extensible

Markup Language (XML, http://www.w3.org/XML/) specifi-

cation file. More complex models can, therefore, quite easily be

implemented, hereby increasing the advantage of the phylo-

HMM even further. The specifics of the implementation

will depend on the species analyzed and are not pursued

further here.
Another advantage of EvoPromoter is that the system is

self-trained. Hence it does not depend on training data.

This approach offers two advantages: first, the system is not

biased towards the structure of the training data; second, it is

directly applicable to species where no previous data on

CRMs is available.
A disadvantage of the method is that it relies on reliable

alignments. In cases where sequence divergence is so high

that alignments are unreliable, the method is inapplicable.

Not all data can be analyzed in the context of phylogenetic

models, but in the presence of the rapid genomic sequencing,

many interesting closely related species (e.g. Drosophila species

and mammalian species) will show levels of divergence where

phylo-HMM analysis is relevant.
As we can see from the analysis of the simulated data,

EvoPromoter’s performance is extremely good when the

underlining assumptions are satisfied and the alignment is

perfect. In real life, the alignment in the non-coding region may

often be problematic. Recently Pollard et al. (2006b) performed

a simulation study using the same HKY85 model as the

evolutionary model for the background genomic sequence

and the Halpern Bruno 1998 (HB98) model for the TFBSs.

They also incorporated indels in their simulation program.

Their results imply that, with standard alignment programs,

at the evolutionary distance similar to D.melanogaster and

D.pseudoobscura, only �40% of true conserved binding sites

are overlapping in alignments. Therefore, when real data are

used, it is no surprise that the phylo-HMM method did not

perform much better than the methods based on a single

sequence. However, much recent progress has been done on the

alignment of the non-coding regions. A recent study by Dewey

et al. developed an algorithm for more reliable alignments for

genomic data (Dewey et al., 2006). Using the alignments

produced by their new algorithm, they found that the

conservation of the cis-regulatory elements between the two

Drosophila species (D.melanogaster and D.pseudoobscura) is

greater than previous thought. We believe that our algorithm

would benefit significantly from higher quality genomic data

and more reliable alignment algorithms. Methods that incor-

porate alignment uncertainty, and evolutionary change of

TFBSs/CRMs into CRM prediction in a phylogenetic frame-

work would be ideal. However, such methods are currently not

computationally tractable.
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