




regions become reproductively isolated and accumulate ge-

netic divergence. Implicit to this model is that different regions

become barriers to introgression in stages while introgression

continues to homogenize the remaining genomic regions as in

standard speciation with gene flow models (Wu 2001).

We show that the X chromosome is the most diverged and

harbors the least evidence for introgression, suggesting that it

is likely a barrier to introgression in multiple Anopheles species

(figs. 2 and 3). In some cases, chromosomal inversions seem to

play an important role. The observation that the X chromo-

some plays a disproportionately large effect in driving specia-

tion (large-X) is in line with studies from Anopheles as well as

many other organisms ranging from Drosophila to mammals

(Coyne and Orr 1989; Geraldes et al. 2008; Garrigan et al.

2012; Sankararaman et al. 2014), but a unifying explanation

for this pattern has yet to emerge. Importantly, a recent study

of mating behavior showed that assortative mating between

A. coluzzii and A. gambiae is controlled by the pericentromeric

region on the X chromosome, providing a functional role for

this region in speciation (Aboagye-Antwi et al. 2015). From an

evolutionary genetic perspective, however, multiple hypothe-

ses have been posited to explain the underlying evolutionary

mechanisms underlying this pattern including the “faster-X”

hypothesis, sex ratio meiotic drive, and misregulation of

X-linked genes in males (reviewed in Presgraves 2008). The

faster-X hypothesis posits that X-linked loci adapt faster than

autosomal loci because X-linked recessive mutations are

exposed to selection in males that have only a single X chro-

mosome, resulting in faster accumulation of hybrid sterility

factors (Charlesworth et al. 1987; Coyne and Orr 1989).

Another popular hypothesis involves sex ratio meiotic drive

where species-specific sex ratio distorter suppressors are dis-

rupted in hybrids causing hybrid sterility (Frank 1991; Hurst

and Pomiankowski 1991). A third hypothesis to explain this

pattern is that gene expression dosage compensation of

X-linked genes is misregulated in hybrids, causing sterility in

hybrids (Lifschytz and Lindsley 1972). Although data have ac-

cumulated in Drosophila allowing more detailed speculation

about the mechanisms underlying the large-X effect

(Presgraves 2008), more data are needed to fully understand

this pattern in Anopheles.

We show that pericentromeric regions also harbor espe-

cially high levels of divergence among more distantly related

species pairs. This pattern is most apparent in the comparison

between A. gambiae (A. coluzzii ) and A. merus (figs. 3 and 5)

and provides strong evidence that both A. arabiensis as well as

A. merus diverged from A. gambiae while continuing to hy-

bridize at a nonnegligible rate in at least the early stages of

speciation. Although we could not test for recent introgres-

sion among A. gambiae and A. merus using the ABBA-BABA

tests, the pattern of excess divergence in some genomic re-

gions is in contrast to what we would expect under a diver-

gence in allopatry model and is more consistent with historical

introgression in freely recombining autosomal regions among

A. gambiae and A. merus, likely in the evolutionary period

following the initial species split. In the case of A. arabiensis,

we show that contemporary hybridization with A. gambiae

continues to homogenize all autosomal regions except the

pericentromeric region of 3L despite strong barriers to genetic

introgression across the X chromosome. Similar patterns of

elevated divergence in lowly recombining pericentromeric

and telomeric regions have also been observed in comparisons

between Drosophila species (Begun et al. 2007; Langley et al.

2012; Mackay et al. 2012; Garrigan et al. 2014), but our

results are the first demonstration of this pattern of excess

sequence divergence in Anopheles. It is important to note

that our results, especially the observation of excess diver-

gence between A. gambiae and A. merus in low-diversity

pericentromeric regions, are robust to the issues confounding

previous observations of high differentiation in these regions,

because our results derive from absolute measures of diver-

gence instead of relative divergence measures that are highly

sensitive to other population genetic processes including nat-

ural selection (Charlesworth 1998; Noor and Bennett 2009;

Cruickshank and Hahn 2014). Importantly, we conservatively

excluded heterochromatic centromeric regions, so the signals

we identify reach well into euchromatic autosomal regions

that are more robust to bioinformatic artifacts that plague

analyses of centromeric regions. These results provide a clear

empirical example of the important role of lowly recombining

regions as barriers to introgression among hybridizing species.

The ABBA-BABA test has become a preferred method for

detecting introgression, but there are several caveats and con-

cerns relating to both the standard test as well as our modified

DBLOCK test. First, it is possible that the signals of introgression

we have detected are not from the species used in the test,

but in fact we have detected introgression from an unsam-

pled, or “ghost,” species. Durand et al. (2011) showed that

such introgression can affect the results of ABBA-BABA tests.

The presence of ghost Anopheles species hybridizing with the

species sampled here is certainly a possibility and could impact

some of our results. However, the possibility of introgression

from “ghost taxa” does not change our conclusion that in-

trogression continues among Anopheles species, shaping pat-

terns of divergence regardless of exactly which subgroup is the

donor. Second, results from our divergence-based analysis

suggest that A. merus introgressed with an ancestral popula-

tion of the A. gambiae species complex, potentially

compromising its use as an outgroup in the ABBA-BABA

test. Although such historical introgression could contribute

marginally to the false positive rate in our inference, it is not

likely to change our conclusion of introgression among taxa

because our analysis is focused on long-shared haplotypes

that are not likely to be affected by such old introgression.

And third, a recent analysis showing that a similar block-wise

test of introgression lacked power to identify introgressed

haplotypes (Martin et al. 2014) raises questions about the

robustness of our DBLOCK analysis. However, there are two
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important differences between our approach and the one

evaluated by Martin et al. (2014). First, these authors imple-

mented the test based on constant-sized physical windows of

the genome, but we used constant-sized blocks of informative

sites that varied in their physical size. This is an important dis-

tinction because our approach controls for the amount of

information in each window, while the number of ancestry

informative sites is bound to vary greatly among physical win-

dows in the approach of Martin et al., which is likely to impact

the sensitivity of this approach. The second difference be-

tween the approaches is that our approach explicitly con-

trolled for LD in the data. We chose block sizes of 500

informative sites because this resulted in average physical

window sizes of ~ 250–350 kb (see Methods), which allowed

each block to be divided into 100 segments larger in size than

the expected distance that LD decays to background levels in

this system. As a result, we believe that our approach is a

robust approach for identifying introgressed genomic regions

and is not likely to suffer from the same concerns raised by

Martin et al. (2014).

In sum, our results suggest that species and subgroups in

the A. gambiae species complex comprise a diffuse and inter-

connected gene pool that may confer access to beneficial

genetic variants from a broad geographic and environmental

range. Such genetic affinity has important implications for

malaria control. On one hand, transgenes may spread more

easily among subgroups and species of malaria vectors, which

could reduce the effort needed to reach and manipulate all

populations involved in disease transmission. On the other

hand, our analysis suggests that certain genomic regions are

less likely to cross species boundaries, especially the X chro-

mosome, providing ideal settings for locating transgenes that

are not intended for broad and general distribution across the

species complex. In both cases, our results underscore the

complexities involved in vector control on a continental scale.

Supplementary Material

Supplementary figures S1 and S2 and tables S1 and S2 are

available at Molecular Biology and Evolution online (http://

www.mbe.oxfordjournals.org/) .
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