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Figure 3: Inference results for real heteroplasmy frequency data. The top row shows results for genetic drift parameters, and
the bottom row shows posterior distributions for scaled mutation rates. Distributions hashed with diagonal lines correspond to
processes with drift parameterized by rates of accumulation of genetic drift with age. (That is, they correspond to the dashed
lines in Fig. 1.) The circles in the red posterior distributions indicate that this process is modeled by an explicit bottleneck.
All parameters are log10 -transformed, and the depicted distributions correspond to these transformed variables. Distributions
are not drawn to a common vertical axis.
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Figure 4: Posterior samples of the effective bottleneck size for mothers of different ages. (A) Posterior distribution of the
effective between-generation bottleneck size for younger, older, and median-aged mothers. (B) Relationship between mother’s
age at childbirth and the effective oogenic bottleneck size. The orange dashed line shows how the median effective bottleneck
size varies with age at childbirth. The solid blue lines show posterior samples from the relationship between effective bottleneck
size and age at childbirth, with each having the form of (C.4), where the genetic drift parameters in this equation are jointly
sampled from the posterior distribution. A total of n = 1000 lines sampled from the posterior are plotted. We note that
each line necessarily decreases with mother birth age due to our assumption that genetic drift accumulates at some rate in the
oocyte (see (C.4)); what varies from one line to another is the rate at which the effective bottleneck size decreases due to this
accumulation of genetic drift.
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Figure 5: Quantile-quantile comparison of real heteroplasmy data from Rebolledo-Jaramillo et al. (2014) and data simulated
under maximum a posteriori parameter estimates inferred from this data. Panel (A) compares marginal distributions of allele
frequencies in each tissue, and panel (B) compares distributions of absolute differences in allele frequency between tissues.
Each dot represents a sequential percentile of the distributions being compared. Following Rebolledo-Jaramillo et al.
(2014), alleles were polarized such that the minor allele in the mother (averaged across her two tissues) was denoted as the
focal allele.

frequency data. This is unsurprising given that the problem is similar to attempting to infer population
size history from ∼100 single-nucleotide polymorphisms. A high scaled mutation rate (2Neµ > 10−4)
is (relatively) most supported in oogenesis, reflecting the observation of possibly de novo mutations in the
dataset. However, the 95% credible interval of each developmental process spans several orders of magnitude
(at least 10−8 < 2Neµ < 10−5), so firm conclusions cannot be drawn.

We assessed the fit of our model to the real heteroplasmy data by simulating data under the maximum
a posteriori (MAP) parameter values and comparing to the real data. Comparing the marginal distribution
of allele frequencies in the sampled tissues (i.e., the marginal site-frequency spectrum) from the actual data
to the MAP simulation data, we find that the marginal distribution of allele frequencies is similar between
the two datasets (Fig. 5A), as is the distribution of absolute differences between each pair of sampled tissues
(Fig. 5B).

In order to use Bayes factors (4) to compare the support for different ontogenetic phylogenies, we calcu-
lated the posterior evidence integral for the ontogenetic phylogeny in Figure 1 as well as for two additional
ontogenetic phylogenies differing in their assumptions about how genetic drift accumulates in somatic tis-
sues (Fig. S4). The first additional model (termed “fixed”, Fig. S4A), assumes that all genetic drift and
mutation particular to each somatic tissue occurs early during development and that there is no additional
drift accumulating later in life. The second, (“linear”, Fig. S4B), assumes that genetic drift and mutation
accumulate linearly with age in somatic tissues. Our original model (Fig. 1) we term “both”, since it assumes
that genetic drift both occurs in a fixed quantity during early development and accumulates later in life.

We find that the “fixed” model is more supported than the “both” or “linear” models, with the ap-
proximate log-evidence values of the “fixed”, “both”, and “linear” models being −1704± 3, −1764± 4, and
−1816± 3, respectively. In the “both” model, in which there is both a period of genetic drift and mutation
in the somatic tissues during early development, the inferred rates of drift accumulation are at the mini-
mum allowed by the inference method (∼ 10−3 drift units per year). This, together with the fact that the
best-supported model does not include the accumulation of genetic drift in adult somatic tissues, suggests
that there is very little additional genetic drift occurring after birth in the two somatic tissues considered
here.
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4. Discussion

Because we modeled genetic drift during multiple ontogenetic processes between embryogenesis in the
mother and the sampling of tissues in the child, our estimate of the size of the oogenic bottleneck per se
was imprecise, with a broad 95% credible interval (10.6–433.1). This is concordant with a recent analysis
of the time-evolution of heteroplasmy variance in mouse oocytes, which concluded that the actual minimal
bottleneck size is difficult to determine and may have only limited impact on overall heteroplasmy dynamics
during oogenesis (Johnston et al., 2015). However, our estimates of the EBS (median 24.5, 95% CI: 11.6–
35.1) are similar to other recent estimates of the oogenic bottleneck size, including an estimate of 32.3 in
a previous analysis of the data used in this study (Rebolledo-Jaramillo et al., 2014), and a previous
estimate of 9 in Li et al. (2016).

Our inference framework allows for the size of the effective oogenic bottleneck to decrease with the
age of the mother as genetic drift accumulates in the oocyte. We found a broad posterior distribution of
the rate by which the EBS decreases in the oocyte (roughly 0.00–0.34 bottleneck units per year, 95% CI),
demonstrating that with the 39 mother-child pairs and 98 heteroplasmic variants in the dataset we analyzed
(Rebolledo-Jaramillo et al., 2014), there is insufficient information obtained by our model to determine
whether genetic drift accumulates with age in the oocyte. In the future, sampling more individuals and
tissues, and with larger pedigrees, it may be possible to provide stronger statistical evidence for or against
genetic drift occurring in the oocyte; this will potentially be informative on the question of how mitophagy
and mitochondrial turnover are involved in oocyte aging, a topic of interest in the study of human fertility
(see Zhang et al., 2017).

In addition to the effective bottleneck between mother and offspring, we also quantified genetic drift
occurring during the embryonic development of the blood and cheek epithelial lineages. We found that
the embryonic genetic drift of heteroplasmy frequencies specific to these tissues was less than the effective
between-generation bottleneck but still appreciable, with median posterior estimates of the effective bottle-
neck sizes being 136.2 (74.1–247.5, 95% CI) and 457.7 (103.9–2817.1) for blood and cheek epithelial cells,
respectively.

At the same time we inferred that there is little accumulation of genetic drift in adult somatic tissues. This
may seem to contradict previous observations that heteroplasmies become more numerous with age (e.g.,
Rebolledo-Jaramillo et al., 2014; Li et al., 2016). If the effective population size of the somatic stem
cells supporting mitotic somatic tissues is larger than the effective population size during embryogenesis
or the maternal germ line, an accumulation of genetic drift with age would produce additional de novo
somatic heteroplasmies. On the other hand, if effective population sizes of somatic stem cells are smaller
than effective population sizes during early development, a longer period of genetic drift in adulthood would
result in fewer heteroplasmic loci, as genetic variation is lost due to ongoing genetic drift in a smaller
population. Here, the posterior distributions of population-scaled mutation rates are too broad to permit
anything to be concluded about the relative sizes of relevant stem cell populations.

There are several ways our inference procedure could be extended. Our model assumes selective neutral-
ity, but it is possible, or even likely, that neutral population-genetic models do not completely describe the
dynamics of heteroplasmy frequency change. Studies of heteroplasmy occurrence in humans have found a
relative lack of non-synonymous heteroplasmic mutations (Ye et al., 2014; Rebolledo-Jaramillo et al.,
2014), or an excess of non-synonymous mutations at low versus high frequencies (Li et al., 2016), sug-
gesting purifying selection. However, evidence for biased transmission of the major heteroplasmic allele
over the minor allele has been inconsistent, with one recent study finding no systematic difference in het-
eroplasmy allele frequency between other offspring (Li et al., 2016), while the original publication of the
data analyzed here did find transmission to be biased towards the major allele at non-synonymous sites
(Rebolledo-Jaramillo et al., 2014). Other studies have also found evidence for positive selection act-
ing on heteroplasmies in somatic tissues, observing repeated occurrence of tissue-specific and allele-specific
heteroplasmies in many unrelated individuals (Samuels et al., 2013; Li et al., 2015). Studies in mice have
also indicated that heteroplasmy may be under natural selection in many instances (e.g., Fan et al., 2008;
Stewart et al., 2008; Sharpley et al., 2012; Burgstaller et al., 2014).

It is possible that the systematic biases in model fit represented in Figure 5 are caused by unaccounted-for
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natural selection. For example, compared to the observed distribution of heteroplasmy frequencies, the MAP
model parameters produce an overabundance of intermediate-to-high-frequency heteroplasmies in blood
tissues (Fig. 5). Hypothetically, this could be caused by purifying selection against harmful heteroplasmic
mutations in blood, which could skew the distribution of heteroplasmy frequencies towards zero. If selection
tends to act on only a single heteroplasmic variant at a given time (i.e., if clonal interference between different
heteroplasmic alleles is rare), the method we present here could potentially be adapted to make inferences
about natural selection in place of mutation. We leave this for future work.

We note that in a recent study finding repeated convergent heteroplasmy in specific tissues in humans,
and thus evidence of positive selection on heteroplasmy (Li et al., 2015), the subjects under consideration
were deceased and thus older than those considered by Rebolledo-Jaramillo et al. (2014); if selection
on mitochondrial heteroplasmy intensifies with age, this may explain the lack of such repeated convergence
in Rebolledo-Jaramillo et al. (2014).

We chose to model heteroplasmy allele frequency dynamics with the Wright-Fisher population model
from population genetics. This model is well-studied and thus facilitates interpretation, and it is general in
the sense that many different population-genetic models of reproduction closely resemble the Wright-Fisher
model when population sizes are at least moderately large (Ewens, 2004). The Wright-Fisher model does
not include mechanistic details of mtDNA dynamics such as the hypothesized segregation of mtDNA copies
in genetically homogeneous nucleoids (e.g., Cao et al., 2007; Khrapko, 2008), or mitochondrial fission,
fusion, degradation, and duplication. The coarse effects of many of these mechanistic details are likely to be
captured by the Wright-Fisher model through appeals to the concept of an effective population size, just as
the details of reproduction of many classical models of reproduction from population genetics can often be
reduced to a change in the effective population size of the Wright-Fisher model (Ewens, 2004; Wakeley,
2009). Here, if we were to include these effects in our model, there would likely be very little power to infer
their properties, as sample sizes are small (n < 100 heteroplasmies). In larger and differently structured
datasets, there may be greater power to infer mechanistic details of mitochondrial proliferation.

In a study of mitochondrial heteroplasmy transmission between the mothers and children of two-parent-
child trios from the Netherlands, Li et al. (2016) found support for a variable bottleneck size, where the size
of the bottleneck for a particular heteroplasmic locus is randomly sampled from a distribution. The model
we present here also allows for variable bottleneck sizes, but it assumes a particular relationship between the
effective oogenic bottleneck size and the age of the mother. As discussed above, our inference is inconclusive
about whether or not the bottleneck size is variable with age. A variable bottleneck size, independent of
mother’s age, could also be implemented in our inference framework by integrating over the distribution
of bottleneck sizes during the calculation of allele frequency transition distributions. In this case, like Li
et al. (2016), we would be inferring the parameters of the bottleneck size distribution rather than a single
bottleneck size. We leave this as an opportunity for future investigation.

Johnston et al. (2015) have recently used a detailed, mechanistic model of mitochondrial duplication,
degradation, and partitioning to study mitochondrial dynamics during oogenesis. The authors applied their
model to data on the time evolution of heteroplasmy frequency variance and mtDNA copy number variation
during oogenesis in mice, finding that the size of the oogenic bottleneck is just one contributor to the final
variance in heteroplasmy frequencies after oogenesis is complete, and that their analysis is inconclusive
about the fine details of segregation in nucleoids (except that nucleoids are not very large and genetically
homogeneous). This work is broadly in agreement with the present study and is complementary in that
it analyzes just one phase of ontogeny (namely, oogenesis) and makes use of time series observations of
heteroplasmy frequencies in mice rather than heteroplasmy frequencies in multiple somatic tissues in adult
humans.

However, it is still possible that the dynamics of heteroplasmy frequency change do not meet the basic
assumptions of any population-genetic model. Any population-genetic model of heteroplasmy would assume
that the germ cells or somatic stem cells giving rise to heteroplasmic variation would compete with one
another for reproduction or at least be chosen randomly for transmission or reproduction. If instead,
for example, there exists a cellular mechanism of quality control, such that non-heteroplasmic eggs are
given priority in ovulation and tend to be ovulated before heteroplasmic eggs, the number of transmitted
heteroplasmies would increase with mother’s age, but the dynamics would not be completely described by any
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population-genetic model that assumes random mating (with or without natural selection) and competition
amongst egg cells for offspring. Other such mechanisms of heteroplasmy propagation could be imagined.
Even if standard population-genetic models cannot adequately describe heteroplasmy frequency change,
modeling heteroplasmy frequency changes on an ontogenetic phylogeny would still be a valid approach.

We assume that the shape of the ontogenetic phylogeny relating the sampled tissues is known. For the
dataset from Rebolledo-Jaramillo et al. (2014), this is an appropriate assumption, since the two somatic
tissues in the mother must be most closely related to one another, just as the two somatic tissues of the
offspring must be most closely related to one another. For other datasets, differing in the number or identity
of the sampled tissues, there may be less of an a priori expectation for the shape of the ontogenetic phylogeny.
While there is a general understanding of the major divisions of tissues during development, the embryonic
origins and lineage of somatic germ cell populations are not straightforward and still being established (e.g.,
Romagnani et al., 2015; Fuentealba et al., 2015; Boisset and Robin, 2012). The current model could
easily be extended to ontogenetic phylogenies for families with two or more offspring. For families with more
than two offspring, the genealogy of the oogonia eventually giving rise to the offspring would be unknown.
This part of the phylogeny could be inferred jointly with other parameters, or, depending on the inferred
rate of genetic drift in the female germ lineage (here 1.6 × 10−3 drift units per year), it could be assumed
that no genetic drift occurs between the birth of the youngest and oldest children.

The topology of the ontogenetic phylogeny could also be made more complicated by admixture, which
is not included in our inference framework. Admixture could result from biological processes, such as
contributions to a mitotic tissue from distinct, isolated adult stem cell niches, or from physical sampling
of an organ containing multiple tissues derived from distinct developmental lineages. Conceptually, our
ontogenetic phylogeny approach could be extended to work with admixture graphs (Patterson et al.,
2012; Pickrell and Pritchard, 2012) by adapting the pruning algorithm for calculating likelihoods to
the dependence structure introduced by admixture. However, given the small size of current heteroplasmy
frequency datasets compared to large whole-genome SNP datasets, detecting admixture with f -statistics
(Patterson et al., 2012; Peter, 2016) or a more typical population phylogeny inference procedure (e.g.,
Treemix, Pickrell and Pritchard, 2012) would likely be more suitable.

The inference framework we present here should be applicable in future studies of heteroplasmy dynamics
in humans and other organisms. Our software mope is flexible with respect to the pedigree of the sampled
individuals and thus is suitable for studies of heteroplasmy both across several generations and within
unrelated individuals. Flexibility is also given with respect to the number of tissues sampled—even studies
of just a single tissue may benefit from modeling multiple ontogenetic processes (e.g., Li et al., 2016). Our
fully Bayesian inference method provides a natural way of quantifying uncertainty, which is important in
studies of heteroplasmy as the number of polymorphic loci is often small compared to other genomic studies.
Finally, mope allows the user to choose the ontogenetic processes to place in the ontogenetic phylogeny;
in the current version allele frequency changes for each such ontogenetic process occur according to the
neutral Wright-Fisher model, but processes governed by other dynamics (e.g., selection, mutation) could be
implemented by modifying the freely available source code.

The ontogenetic phylogeny framework may also be useful in areas other than the study of mitochondrial
heteroplasmy. In particular, in the study of the dynamics of cancer evolution, heterogeneous progression in
samples of many tumors may necessitate modeling per-day rates of genetic drift and mutation (or natural
selection) rather than fixed amounts common to all tumors. Our inference procedure could also be used in
the typical population phylogenetic setting to infer the divergence history of a group of populations, but
this application is limited by the relatively small number of loci (< O(1000)) that our method can accept
due to the computational costs of likelihood evaluations with the pruning algorithm. A maximum-likelihood
implementation of our model, requiring fewer likelihood evaluations, may be applicable to genome-scale
SNP data, possibly comparing to Kim Tree (Gautier and Vitalis, 2013) and SpikeyTree (Tataru et al.,
2015).
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Appendix A. Likelihood calculation

Briefly, the pruning algorithm calculates, for each node n in the phylogeny and each frequency fj at
node n, the probability P(D(n) | x(n) = fj), where D(n) is the data at all the leaves collectively having n as
their most recent common ancestor, and x(n) is the heteroplasmy allele frequency at node n. The algorithm
proceeds up the tree, from the leaves to the root, using the fact that

P(D(n) | x(n) = fj) =
∏
c

child of n

∑
k

P(x(c) = fk | x(n) = fj) P(D(c) | x(c) = fk). (A.1)

The probability P(x(c) = fk | x(n) = fj) is the probability of transitioning from allele frequency fj in node
(n) to fk in node (c), a child of (n). This probability is calculated using the discrete-generation Wright-Fisher
model, as explained in Appendix B.

Here and below the current genetic drift parameters b and mutation rates θ are implied. We model the
probability of the data at leaf (i.e., sampled tissue) node l as the binomial likelihood

P(D(l) | x(l) = fj) =

(
Cl

hl

)
fhlj (1− fj)Cl−hl , (A.2)

where Cl and hl are respectively the total coverage and number of alternative alleles in that tissue.
Given each P(D(r) | x(r) = fj) for root node r, the overall likelihood is

P(D(r)) =
∑
j

P(x(r) = fj) P(D(r) | x(r) = fj). (A.3)
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The probabilities P(x(r) = fj) are given by the heteroplasmic allele frequency distribution at the root, a
discretized symmetric beta distribution with additional weight at frequencies 0 and 1, the parameters of
which are inferred jointly with the genetic drift and mutation parameters.

The probability of heteroplasmic polymorphism (cf. denominator of Eq. (3)) can be calculated as

P(Hi; b,θ) = 1− P(D | all leaves 0)− P(D | all leaves 1), (A.4)

with the second two terms giving the probability of the read count data in all the sampled tissues given that
allele frequencies are all 0 or 1, respectively.

Appendix B. Calculating allele frequency transition distributions

The pruning algorithm requires distributions of allele frequency transitions along a branch. Our approach
to calculating allele frequency transition probabilities is simple and intuitive: we precalculate transition dis-
tributions under the discrete-generation Wright-Fisher model using numerical matrix multiplication on a
grid of generations and mutation rates. To obtain a transition distribution that was not precomputed, we
linearly interpolate between precomputed distributions. Using a haploid population size of N = 2000 in
our Wright-Fisher model calculations, we obtain a satisfactory approximation to numerically exact Wright-
Fisher transition probabilities by precomputing distributions at just 207 different generations, ranging from
1 to 20, 000, and 44 mutation rates, with θ = 2Neµ ranging from 0 to 7.5× 10−2. For ontogenetic processes
modeled by a single-generation bottleneck with subsequent expansion, we precompute allele-frequency tran-
sition distributions for 48 bottleneck sizes ranging from 2 to 500, linearly interpolating between bottleneck
sizes for distributions that are not precomputed.

Rather than use each (2001×2001) transition matrix in its entirety, we combine discrete allele frequencies
into 121 bins, with bins unevenly distributed between 0 and 1 such that low and high frequencies are more
represented than intermediate frequencies. We bin allele frequencies according to the following scheme: Let
P = {Pi,j} be a (2001× 2001) allele frequency transition matrix for a Wright-Fisher model with N = 2000,
with Pi,j being the probability of transitioning from frequency i to j. Let Q = {Qk,l} be a (121 × 121)
binned transition matrix. If (a1, . . . , am) are frequencies in bin k, and (b1, . . . , bn) are frequencies associated
in bin l, then

Qk,l =

{∑n
x=1 P(m+1)/2,bx m odd∑n
x=1

(
1
2Pm/2,bx + 1

2Pm/2+1,bx

)
m even.

Appendix C. Calculation of the effective bottleneck size

We define the effective bottleneck between mother and offspring as the combined genetic drift occurring
during the early oogenic bottleneck, the turnover of mitochondria in the maternal germline prior to ovulation,
and the first few cell divisions after fertilization but before gastrulation. We combined the effects of genetic
drift during these processes by 1) translating all drift parameters into units of generations per effective
population size (g/Ne, “drift units”), 2) summing the drift, in these units, and 3) translating this summed
drift back into units of an instantaneous bottleneck. Since we assumed that bottlenecks occurred for just a
single generation followed by doubling back up to a large population size (here, N = 2000), we determined
that the relationship between drift dg measured in drift units and Nb, an instantaneous bottleneck size, is
close to

dg =

n∑
i=0

1

Nb2i
, (C.1)

where n = blog2(N/Nb)c is the number of generations it takes for the population size to double back up to
the original population size.

For Nb << N , this sum is well approximated by the integral
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dg ≈
∫ log2(N/Nb)

− 1
2

dt

2tNb
=
N
√

2−Nb

NNb ln 2
≈
√

2

Nb ln 2
≈ 2

Nb
. (C.2)

The lower limit of integration follows from an interpretation of (C.1) as a midpoint Riemann sum, improving
accuracy. Thus we also have

Nb ≈
2

dg
. (C.3)

For a mother of age a, the effective bottleneck size is thus

Nbe =
2

2
Nb

+ aλg + ds
, (C.4)

where Nb is the early oogenesis bottleneck size, λg is the rate at which genetic drift accumulates in the
maternal germline, and ds is the amount of genetic drift occurring after fertilization but before gastrulation.

We confirmed (C.2) and (C.3) by finding, for different bottleneck sizes Nb, the amount of drift dg that
minimized the total variation distance between the allele frequency transition distributions specified by dg
and Nb:

d̂g(Nb) = argmin
dg

1

2

∑
i

|pdg (i)− qNb(i)|. (C.5)

Here pdg is the probability transition distribution for drift parameterized by dg drift units, and qNb is
the probability transition distribution for drift parameterized by bottleneck size Nb. Minimizing (C.5)
for different values of Nb shows that our approximation (C.2) closely follows the numerically translation
minimizing the total variation distance (Fig. S5).
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